M E METROPOLE
DIGITAL

Design de Jogos Digitais
Aula 09 - Prototipacdo e Testes

o
IME =
setorpRoDUGAO MuTiMiDla Il Y I Y DIGITAL unersoacef 500 GRanoe po NorTE

Material Didatico do Instituto Metrépole Digital - IMD
Versao 5.0 - Todos os Direitos reservados

Apresentacao

Alb, amigos da rede jogo! E chegamos a mais uma aula! (Melhor tentar de novo.
Ficou com cara de jogo de futebol!)

Bem-vindos a mais um momento de aprendizado! (Muito formal! Ndo é bem a
minha cara.)

0l4, meu povo! (E o que temos para hoje!)

Hoje nossa aula esta focada em tarefas essenciais no desenvolvimento de um
jogo: prototipacao e testes! Apesar de serem atividades fortemente interligadas, elas
tém suas particularidades e geralmente sdao desenvolvidas por equipes diferentes. A
prototipacdo é associada a construcao de produtos, enquanto os testes tém um
carater de validacdo, para verificarmos se partes do nosso jogo contém erro, se
fazem o que determinamos, dentre outras possibilidades.

Essas atividades iniciam desde a fase conceitual, principalmente a prototipacao,
e perduram ao longo de todo o projeto, com os testes intensificando mais ao final
do desenvolvimento. Mas vamos falar sobre isso com mais calma ao longo da aula!
Sempre que possivel, veremos as relacdes entre essas acdes, a equipe de
desenvolvimento e as fases de producdo do jogo.

E hora da pretetipacdo!

Objetivos

e Entender os conceitos de Prototipagdo e Testes e sua
importancia no processo de desenvolvimento

e Conhecer como funciona o processo de prototipacdo dentro do
design de um jogo

e Diferenciar tipos de prototipos de jogos

e Conhecer os diferentes tipos de testes presentes na producao
de um jogo

1 - Propdsito dos testes e da prototipacao

Que tal iniciarmos os nossos estudos tentando responder a trés perguntas:
e O que sdo protoétipos e testes?
e Para que servem?

e Como se relacionam com o processo de desenvolvimento de um
jogo?

De acordo? Vamos nessa!

Primeiramente temos as definices. Um protétipo é um produto intermediario
construido ao longo do desenvolvimento e que representa uma versao simplificada
da ideia de trabalho ou ainda uma parte especifica do projeto. Veja que esse ndo &
um conceito exclusivo dos jogos: maquetes sao protétipos da construgdo civil e da
arquitetura, assim como modelos da galaxia feito com fios e isopor também sdao um
protétipo de como 0 nosso universo é organizado. A ideia do protétipo ndo é ser
uma versao final do produto, embora seja um passo importante no entendimento e
na visualizacdo de como a versao definitiva do projeto tomara forma.

Figura 01 - Os prot6tipos sdo uma representacdo da ideia de trabalho e servem para facilitar a
visualizacao de como a solugao final sera.

Fonte: http://www.dulaneydraftinganddesign.com/Quick Prototypers.htm. Acesso em 28 out.
2015.

Os prototipos sdo construidos com um objetivo especifico: podem ser um
rascunho ou maquete utilizados em sessdes de brainstorm para explicar conceitos
ou ideias, ou ainda facilitar a visualizacdo de uma mecanica de jogo cuja descricao
textual ou falada ndo é tdo intuitiva. Independentemente da sua finalidade, o
protétipo possui um escopo limitado, ndo sendo uma implementa¢ao completa do
produto, apenas o suficiente para cumprir o seu propgésito.

Imagine que estamos fazendo um jogo de estratégia e desejamos que ele
possua uma tela simples e com poucos controles na HUD para facilitar a visualiza¢ao
do jogador. Para avaliar se a tela esta limpa (poucos itens expostos) ou facil de
manusear, ndo € preciso ter todo o jogo implementado! Um esboco dela feita em
papel ou em um software de desenho, ou até mesmo uma versao implementada da
interface de forma computacional, apenas para visualiza¢ao, ja pode ser o suficiente
para apresentar uma proposta valida para discussao, e a partir dai evoluir a
interface para o seu conceito final. Uma vantagem dessa abordagem é que, por ndo
se tratar de um produto completo, o protétipo € bem mais barato e rapido de
construir, o que permite manter os custos do desenvolvimento reduzidos em fases
iniciais do projeto.

Figura 02 - A prototipacdo de interfaces em papel € uma forma extremamente rapida e simples
de apresentar uma ideia de visualizacdo para o jogo.

TLE NTERACTION 88 kil

(SVERY MASONRY
’ Soccer Moms Bide “

3 € delede,
§ He ponfumaton expand down, o
e e w place Fom, podibl FADE OuT
3 bider change R REST OF
. SCREPN
g ‘_p;’p.pg A dile
'
| | 26 B0 e Py —
5 NEW VEHICLE CANCE
§ WIP. PER MONTH x
-~ a (D-*-Fi o,
2 DETAL kiver
3 4393 an -
& PER MIONTH
e o on e I WPLOAD
" 1 WL
W #oeiice Bemander 20 ADWKT THMENWL
Wove dowin LR
o =
27 eues e
A MANTANENCE RECS

Fonte: https://msdn.microsoft.com/en-us/library/hh404087.aspx. Acesso em 28 out. 2015.

http://www.dulaneydraftinganddesign.com/Quick_Prototypers.htm
https://msdn.microsoft.com/en-us/library/hh404087.aspx

O uso de protétipos também auxilia na redu¢do de riscos de um projeto,
principalmente no tocante a orcamento e cronograma. Imagine a seguinte situagao:
vocé esta desenvolvendo um jogo de FPS futurista e deseja incluir uma mecanica de
movimentacao por teletransporte. Vocé desenvolve a ideia, pensa nas regras e nas
formas como o jogador ativara essa mecanica. A partir dai vocé precisa testar se ela
realmente funciona em um ambiente de jogo FPS, se o jogo permanece balanceado,
se ndo existe uma estratégia dominante que apareca devido a inclusdo dessa
mecanica. Vocé pode até tentar intuir isso de sua experiéncia, mas a melhor forma
de realmente perceber como a mecanica afeta a jogabilidade é através do préprio
jogo!

Mas, e ai? Se o desenvolvimento fosse feito diretamente na estrutura do jogo,
vocé teria que esperar toda a parte de recursos graficos gerados pela equipe
artistica, os modelos 3D, o design de nivel da fase e a implementa¢do de todos os
sistemas para testar o jogo. Parece muito tempo para comecar a testar uma
mecanica, ndo é mesmo? E se apo6s tudo isso vocé descobre que a mecanica nao
funciona bem e precisa tira-la do jogo? Todo o trabalho que foi dispendido na
implementacdo dela (programacgdo, criacdo dos efeitos visuais, sonoros, etc.) vai
para o lixo. E isso significa dinheiro gasto (salario da equipe, custo de aquisi¢cdo de
material, etc.) e tempo da equipe, que poderia trabalhar em outras partes do
projeto! Ja consigo até ver o produtor dando um grito e batendo na mesa.

Para evitar esse tipo de situacdo, as equipes constroem versdes simples da ideia
gue querem: um esboc¢o de nivel ou espaco de interacdao sem artefatos graficos com
0s sistemas essenciais de movimentacao do jogo ja seriam suficientes para testar a
mecanica. Afinal, a jogabilidade ndo depende da qualidade grafica, ndo é mesmo?
Dessa forma, rapidamente é possivel construir um ambiente no qual a mecanica
pode ser testada e validada, sem necessidade de investimento de toda a equipe do
jogo na tarefa. No exemplo do teletransporte, poderiamos fazer um nivel bem
simples, até mesmo usando um modelo ja pronto no motor do jogo, e fazer o
teletransporte sem efeitos visuais, apenas reposicionando o personagem no nivel.
ApOs alguns testes, teriamos uma ideia de como isso funcionaria dentro do jogo, e a
partir dai poderia ser tomada uma decisdo com relacdo ao investimento no
desenvolvimento dessa mecanica dentro do jogo ou nao.

A prototipacdo esta totalmente alinhada com a ideia de itera¢do rapida e
continua do processo de design, como vimos na primeira aula da disciplina. Como
eles podem ser construidos e descartados rapidamente (devido ao baixo custo), é
possivel realizar varios ciclos de valida¢do da ideia, levando a uma decisdo mais
rapida sobre o formato final da mecanica. Voltando para o exemplo: com o nivel
simples construido e a movimentacdo definida, nés poderiamos fazer um protétipo
onde o teletransporte fosse:

1. a) acionado em um ponto fixo do mapa;
2. b) um item que o usuario coleta no nivel e seja acionado como uma arma;

3. ¢)um comando natural do jogador (como pular ou abaixar) acionado a
qualquer momento por uma tecla de comando.

A Unica mudanca entre os trés prototipos seria a forma de acionamento, e como
nao é necessario desenvolver nenhuma arte diferenciada entre eles, rapidamente as
trés ideias poderiam ser testadas. Inclusive elas podem ser implementadas de forma
paralela por equipes diferentes, o que agilizaria a validacdo do formato mais
adequado para o jogo.

Figura 03 - Nosso teletransporte poderia ser feito de varias formas: pontos especificos na fase
(a), através de um item ou arma (b) ou de forma natural (c)

WELCOME TO MARP ZOHE®

Fonte: a) http://gaming.wikia.com/wiki/Warp Zone. Acesso em 28 out. 2015.
b) http://www.moddb.com/mods/garrys-mod/addons/portal-gun-with-models. Acesso em 28
out. 2015.
) https://media.giphy.com/media/10l0xtwCHE&Ix9%e/giphy.gif. Acesso em 28 out. 2015.

O processo de prototipacdo é mais intenso no inicio do processo de
desenvolvimento, principalmente nas fases de concepc¢do e pré-produg¢do, pois o
jogo ainda esta tomando forma, sendo necessario definir os seus diversos
componentes. Isso ndo impede que protétipos possam ser construidos em fases
mais avanc¢adas do projeto.

http://gaming.wikia.com/wiki/Warp_Zone
http://www.moddb.com/mods/garrys-mod/addons/portal-gun-with-models
https://media.giphy.com/media/10l0xtwCH8Ix9e/giphy.gif

Os testes sao cenarios ou casos idealizados para checar se um produto funciona
e/ou esta de acordo com o que foi especificado nas fases de design do jogo. Isso
envolve duas tarefas:

e Validagao: checar se o produto testado realmente atende as
expectativas (foi construido o que eu pedi?).

e Verificagdo: procurar por erros na execucdo do teste (o que eu pedi
foi construido sem erros?).

Perceba que um produto pode falhar em apenas uma dessas etapas. Voltando
ao exemplo do teletransporte (estou me sentindo o préprio Noturno dos X-Men!):
apos varios protoétipos, foi decidido que o teletransporte sera realizado através de
locais especificos do mapa, chamados Portais de Teletransporte. Ao entrar em um
portal, é aberta uma tela onde o jogador pode selecionar qualquer posicao valida
dentro do mapa da fase para ser transportado imediatamente.

Se na versdo final do jogo, o jogador entra em um portal de teletransporte,
escolhe uma posicao (X,Y) e vai parar em outra (Z,W), temos um erro de verificacao: a
operacao esta de acordo com o especificado, mas nao esta funcionando direito!
Provavelmente algum programador errou a conta na hora de calcular a nova posicao
do jogador (claramente, ndo cursou Matematica para Jogos!). Erros de verificacao
normalmente sdao bugs no sistema e o processo de corre¢dao consiste em localizar o
defeito no codigo para reimplementar apenas a parte defeituosa.

Porém, se na versdo final do jogo, o jogador chega a sala de teletransporte e na
hora de escolher os locais para ir, apenas estiverem habilitados locais onde existem
outros portais de teletransporte, temos um problema de validacdo: a operacao
funciona, mas ndo segue a especificacdo do projeto! Aqui o problema normalmente
advém de uma falha de comunicacdo entre a equipe de programacao e a de design,
nesse caso a equipe ndo entendeu corretamente o que precisava ser feito. Esse tipo
de erro tem o potencial de ser mais grave porque pode resultar na reimplementacao
de toda a funcionalidade (ou até de outros sistemas do jogo).

Figura 04 - Erro de codificagdo versus Erro de especificagao.

Erros de Especificacdo

Bom, os propdsitos principais dos testes sao a valida¢ao das funcionalidades e
verificacdo de erros. Mas esses ndo sao 0s Unicos beneficios a alcancar através da
atividade de testes! Uma grande vantagem, principalmente em testes com grupos
externos a equipe de desenvolvimento, é a possibilidade de avaliar jogadores em
contato com o jogo e observar como os aspectos de jogabilidade e o conceito geral
sdo absorvidos por eles. Se os jogadores ndo estiverem gostando ou se divertindo,
pode ser uma boa oportunidade de descobrir quais os elementos que ndo estao
funcionando dentro do jogo e porqué isso acontece. Ou até mesmo desistir da ideia
do jogo, nos casos mais drasticos!

Outra tarefa importante que é subsidiada pelos testes é o balanceamento do
jogo. Com o tempo, é comum que tanto a equipe de design e os testadores da casa
conhecam o jogo tdo bem que ele passe a se tornar facil (depois de jogar mil vezes,
até Dark Souls fica apenas dificil). Nesse momento pode ocorrer um fendmeno
denominado designer blinds ou “viseira de desenvolvedor”: a equipe ja possui um
viés tdo forte com relacdo ao jogo que comeca a ter dificuldade em perceber
problemas de balanceamento ou, ainda, realiza ajustes desnecessarios achando que
0 jogo estd “facil demais”. Isso pode acarretar em um jogo muito dificil para
jogadores que estarao pegando o jogo pela primeira vez, ja que ele ndo vai ter o
mesmo nivel de conhecimento que a equipe a qual construiu o jogo. Ao se realizar
testes com pessoas que estdo interagindo com o produto pela primeira vez, os
designers podem perceber esse ajuste excessivo e retornar 0 jogo a um estado mais
balanceado de dificuldade.

Os testes estdo presentes ao longo de todo o processo de desenvolvimento,
porém sao intensificados nas fases de producdo e testes. Eles sao feitos por varias
equipes, desde os programadores que implementam as funcionalidades e designers
que validam os sistemas produzidos até as equipes de testes, tanto internas quanto
externas ao projeto.

Acho que deu para resumir a esséncia da prototipacdo e dos testes. Vamos
agora detalhar um pouquinho mais sobre elas!

2 - Tipos de Prototipos

Agora vocé ja sabe para que serve um protétipo, entdao veremos quais sao 0s
tipos mais comuns quando falamos de jogos digitais. Antes, vamos deixar uma coisa
bem clara: um protétipo de um jogo digital ndo precisa ser um artefato digital!

Figura 05 - La vem esse doido com as loucuras de novo.

Quer alguns exemplos? Vamos pensar aqui no desenvolvimento de um
personagem para um jogo. Normalmente a equipe de arte comeca com alguns
desenhos de rascunho para captar a esséncia do personagem através de artes
conceituais ou de modelos em massinha ou argila:

Figura 06 - Exemplos de artes conceituais.
Jogo: The Witcher 3.

Fonte: a) http://kenji893.deviantart.com/gallery/. Acesso em 27 out. 2015.
b) https://www.deviantart.com/art/The-Witcher-Clay-Sculpture-11-99606935. Acesso em 27 out.
2015.

Realizada essa primeira definicdo da equipe artistica, os modeladores do jogo
comecam a trabalhar na renderizacdo do modelo 2D ou 3D que sera utilizado, a

partir de um modelo simplificado, até gerar um objeto que estara, entdo, pronto
para ser inserido no jogo.

Figura 07 - Modelo 3D de um personagem, sendo criado em varias etapas. Desde a construg¢ao
atraveés de varios poligonos até uma versao final, com texturas e cores aplicadas a superficie do
personagem. Jogo: The Witcher 3.

Bl

"1 S

Wk
o

e

-

iy /.
TR
SR

Fonte:

http://witcher.wikia.com/wiki/Character Design. Acesso em 27 out. 2015.

http://kenji893.deviantart.com/gallery/
https://www.deviantart.com/art/The-Witcher-Clay-Sculpture-II-99606935
http://witcher.wikia.com/wiki/Character_Design

Assim, o processo é finalizado com a aplicacdo de texturas sobre o objeto e a
definicdo das animac¢bes para a sua movimentacdo. Ao final do processo temos,
entdo, um personagem aparecendo prontinho no jogo!

Figura 08 - Produto final do processo de design do personagem. Nada mal, hein? Jogo: The
Witcher 3.

Fonte: http://steamcommunity.com/news/post/518257376266664639/?insideModal=1. Acesso
em 27 out. 2015.

Com certeza, nessa sequéncia de criacao tivemos protoétipos digitais, como os
artefatos 3D gerados em ferramentas de modelagem ou esqueletos de animacao
para validar a movimentacao do personagem. Mas, antes de tudo isso, nos tivemos
protétipos feitos em papel e plastico, que foram importantes para definir a forma e
o estilo do personagem e orientaram o processo de criacdo até o modelo final do
jogo!

Para a parte grafica é mais facil de visualizar o uso de protétipos analégicos,
entretanto para o sistema de mecanicas? Definitivamente deve ser um protétipo
digital, ndo é?

Ndo! Na verdade, é muito comum o uso de protétipos analdgicos para a
validacdo de mecanicas ou construcao de niveis de um jogo. E nada melhor que um
exemplo louco para mostrar como esse processo pode ser conduzido.

http://steamcommunity.com/news/post/518257376266664639/?insideModal=1

Imagine que vocé precisa testar e prototipar um jogo FPS do tipo arena, onde
varios jogadores competem um contra o outro. Bem ao estilo Counter-Strike! E por
um segundo esqueca que vocé consegue fazer isso clicando Novo Jogo -> Modelo
FPS no seu motor de jogo. Como vocé poderia prototipar um jogo de FPS de forma
analégica?

Primeiramente, precisamos representar o espaco fisico, entdo vocé pode
prototipar a jogabilidade através de um jogo de cartas, tabuleiro, etc. Para o nosso
exemplo podemos desenhar um tabuleiro com o formato do nivel desejado,
marcando possiveis elevacdes com simbolos de escadas. Para cada jogador
envolvido na disputa, podemos acrescentar uma peca ou token, a qual representa
tanto a sua posicdo no tabuleiro (e eventualmente um mapa do jogo) como a
direcdo que ele estd encarando. Para finalizar, vamos discretizar o espa¢o do
tabuleiro dividindo-o em casas de tamanho uniforme, o que facilitara a
movimentacao das pecas ao longo das simulacdes.

Figura 09 - Um exemplo muito elaborado do que pode ser feito. Isso poderia também ser
simplesmente um mapa desenhado em papel A3 e balinhas Xaxa representando os
personagens!

Fonte: https://www.hastac.org/blogs/imsnhogan/2014/01/22/02-board-game-rapid-prototyping.
Acesso em 27 out. 2015.

https://www.hastac.org/blogs/jmsnhogan/2014/01/22/02-board-game-rapid-prototyping

Ao posicionarmos todas as pecas, temos no tabuleiro uma configuracao espacial
para o0 nosso jogo. Ainda podemos acrescentar pecas que representem objetos
dentro do jogo, como barreiras, portas e inimigos, ou podemos apenas desenhar
esses objetos no mapal!

Beleza, tenho meu espaco fisico. Mas como eu jogo? Bom, um jogo FPS ocorre
em tempo real, mas na nossa representacdo de tabuleiro pode ser complicado
representar essa mecanica de tempo. Teriamos que ter varias pessoas
movimentando cada peca, ia ser uma loucura! Sem contar que a possibilidade de
trapaca é grande! O que podemos fazer aqui?

Uma opc¢do é discretizar o nosso tempo em unidades fixas, em que cada a¢ao do
personagem demore X unidades de tempo (que sera definida por nés), como: andar
uma casa do nosso tabuleiro gasta uma unidade de tempo, mudar de dire¢do
também gasta uma unidade, atirar gasta duas unidades (porque precisa mirar).
Dessa forma, vamos simular os turnos de forma sincrona: cada personagem do
mapa pode realizar uma quantidade fixa de unidades de tempo por turno. Assim
ficamos com uma espécie de simulacdo camera lenta do jogo! Se definirmos que
cada jogador tem trés unidades de tempo para gastar por turno, entdao um jogador
poderia avancar trés casas, mudar de direcdo e avancar duas casas ou atirar e
avancar uma casa, por exemplo. Embora ndo seja uma simula¢do perfeita, ela nos
dara uma boa ideia de como as mecanicas do jogo funcionam. Caso se deseje
adicionar um elemento de incerteza a algumas acdes (como o tiro), pode-se
adicionar ainda uma mecanica de sorte utilizando dados para obter valores que
determinam se uma acdo foi bem-sucedida ou nao.

Agora temos uma boa ideia de como jogar o protétipo. No entanto, ainda falta
algo para tornar a simulagdo mais proxima da experiéncia de jogo real! O problema
€ que no jogo de FPS cada jogador visualiza apenas a sua tela, e ndo tem ideia do
que o outro vé (menos no GoldenEye do Nintendo 64, que era show! E vocé via tudo
em uma unica tela dividida, entdo dava para fazer aquela “roubadinha”). Mas se
temos apenas um tabuleiro, todo mundo conhece o estado do jogo. O que fazer?

Figura 10 - Vou precisar de uma aspirina.

Nessa hora pegamos emprestada a experiéncia dos sabios jogadores de RPG:
vamos usar uma entidade que controla o estado do jogo, alimenta apenas as
informacdes necessarias para cada jogador e avalia os resultados das a¢des para
definir o que efetivamente aconteceu no jogo. Vamos ter um Dungeon Master o

(O Dungeon Master, ou mestre da sessdo, é a pessoa que controla o andamento do

Jjogo. Querido por todos, ja que ele decide se vocé sobrevive ao ataque do dragdo ou
nao!)

O que faremos é desenhar N tabuleiros iguais, sendo que um ficard com a
pessoa que controla a sessao do jogo e N-1 ficardo com os jogadores. Cada jogador
tera revelado em seu tabuleiro apenas as informacdes que o seu personagem sabe
e consegue ver. O mestre da sessao tera um tabuleiro com todas as informacdes e
pecas dos jogadores, representando o estado completo do jogo. A partir dai o
mestre controla a sessao: recolhe as acdes que cada jogador toma no turno e
executa-as em seu tabuleiro, determinando o resultado de cada uma. Por exemplo,
se o jogador 1 esta vendo o jogador 2, ele pode emitir como a¢8es “Atirar e mover
para frente”. Se o jogador 2 emitiu como ac¢bes “Mudar dire¢do para Sul e mover
duas casas”, ele sera atingido pelo tiro! Se a acdao do jogador 2 for “Mover 3 casas
para frente”, ele escapara por um triz.

Além de realizar as movimentag¢des, o mestre informara para cada jogador os
sons que ele escuta, direcao, se foi atingido ou ndo, se um adversario apareceu em
seu campo de visdo. Assim, cada jogador vai atualizando o seu proéprio tabuleiro de
acordo com as informacBes repassadas. Nao é uma simulacdao perfeita, mas
conseguimos replicar a experiéncia de Caca e Fuga que desejamos no jogo digital!

Além disso, pode-se observar alguns aspectos interessantes, como os tipos de
estratégias que os jogadores empregam ou se existem pontos do mapa onde o
jogador possui uma vantagem sobre os outros. E tudo isso antes de implementar a
primeira linha de cédigo ou desenhar o primeiro modelo 3D do jogo! Na verdade,
essa sessao pode ser organizada em poucas horas, e em poucos dias ja se pode ter
uma boa ideia de como o jogo funcionara.

O wuso de protétipos analdgicos € extremamente interessante no
desenvolvimento de jogos digitais. Porém, hoje em dia a construcdo de protétipos
digitais é facilitada pelos motores de jogos que ja possuem templates ou modelos de
niveis e mecanicas especificos para determinados géneros. Dessa forma, um
desenvolvedor pode abrir um projeto pronto com um mapa e movimentacdo
padrbes de FPS e apenas construir os elementos necessarios para a gera¢ao do
protétipo desejado.

Aqui n6s podemos tracar uma classificagdo com relacdo ao quanto o prototipo
se aproxima da versdo final do produto ou ndo: quando um protétipo apresenta
apenas um rascunho da ideia, € chamado de protétipo de baixa fidelidade, e seu
objetivo é entender os requisitos necessarios e prover uma visualizacao inicial do
conceito trabalhado. Normalmente os protétipos iniciais do desenvolvimento,
principalmente os analdgicos e os modelos digitais simplificados, se enquadram
nessa categoria. Quando os prototipos estdao mais proximos da representacao final
da ideia, dizemos que eles sdo protoétipos de alta fidelidade, e ja sao utilizados para
validacdo final com as equipes envolvidas ou até mesmo com o jogador (uma versao
de demonstracdao, por exemplo). Esses protétipos também sdo utilizados para
apresentar partes do jogo para a comunidade como estratégia de marketing.

Dentre os protétipos de baixa fidelidade, destacamos um que é usado de forma
recorrente no desenvolvimento de jogos: o nivel de caixa cinza ou Gray-box Model.
Esse protétipo é construido com o intuito de testar a jogabilidade, sistemas de
mecanicas ou navegacao em um determinado nivel do jogo, e tem como principal
carateristica a auséncia de artefatos graficos em versao final. Ele normalmente é
construido utilizando-se elementos geométricos padrdes, como retangulos e caixas,
apenas para simular obstaculos e elementos de interacdo com o jogador, dando a
aparéncia de um jogo construido com caixas de papeldo ou caixas cinzas (por isso
ele tem esse nome).

Figura 11 - No protétipo Gray-box Model, o importante é o teste da jogabilidade e das
mecanicas do jogo.

Fonte: http://pete-ellis.com/kzm/. Acesso em 27 out. 2015.

Do lado dos protétipos de alta fidelidade, destacamos o Vertical Slice ou Iamina
vertical. Esse tipo de protétipo é feito com o objetivo de apresentar o jogo e é
implementado como uma pequena porcao completa (algumas vezes menor do que
um nivel), contendo artefatos e sistemas em suas versdes finais ou mais atuais de
desenvolvimento. A ideia é passar uma visdo de como sera o jogo final, podendo o
prototipo ser interativo (com um espaco e/ou conjunto limitado de a¢des) ou apenas
expositivo, como uma filmagem em video das principais caracteristicas do jogo.

Figura 12 - Uma vertical slice objetiva mostrar como todas as camadas de um jogo se
combinam, dando uma ideia da versao final. Porém ela é feita em um escopo limitado, nao
explorando todos os aspectos do jogo.

Inventario e gestao de itens

<€—vertical slice

http://pete-ellis.com/kzm/

Fonte:
. Acesso em 27 out. 2015.

Esses ndo sao os unicos tipos de protétipos, mas ja sdo uma boa introducdo! E
qual eu devo usar? Tudo depende do seu projeto, afinal cada jogo € unico e
demanda técnicas diferentes. Mas existem algumas dicas que podem ajudar vocé no
uso e na escolha dos prototipos. Vamos a elas!

3 - Boas praticas para prototipacao

Nessa secdo vamos listar algumas dicas que autores e designers da industria
consideram chaves para se ter um processo de prototipacao eficiente.

e Saiba exatamente porque vocé esta construindo o protétipo. Parece
besteira, mas nao é. O objetivo do protoétipo ajuda a definir qual
sera o tipo, o escopo, a midia em que sera construido e até mesmo a
qualidade (se sera de baixa ou alta fidelidade). A ideia é apresentar
algum aspecto do jogo para os jogadores? Vocé deseja validar uma
mecanica com a equipe de design em uma reunido de brainstorm?
Deseja saber se é possivel implementar um sistema de personagens
inteligentes com comportamento de grupos no motor utilizado pela
equipe de programacdo? Deseja saber se um determinado estilo
visual agrada ao seu publico-alvo? Saber qual pergunta se deseja
responder é essencial para construir um prototipo que efetivamente
contribua para o processo de desenvolvimento.

¢ Nao se apegue demais ao seu protétipo! A ideia da prototipacao
rapida € construir varios produtos que possam ser utilizados,
validados e descartados de acordo com a necessidade. Apesar de
vocé ter investido um tempo construindo o protétipo, isso ndo
significa que ele deve ser obrigatoriamente utilizado no projeto.
Muitos programadores ou designers sentem que descartar um
prototipo é o mesmo que descartar horas de trabalho, mas isso nao
é verdade. Muitas vezes o protétipo serve apenas para que vocé
refine sua ideia, e a visao que o protétipo Ihe da é algo que nao se
perde, mesmo se vocé der um delete nele!

http://askagamedev.tumblr.com/post/77406994278/game-development-glossary-the-vertical-slice

e Procure organizar a sua construc¢ao de protétipos de acordo com a
prioridade para o projeto. No caso de um RPG voltado para a acao,
é importante iniciar com a prototipa¢do dos sistemas de combate e
movimentacao e depois partir para sistemas secundarios, como
producdo de itens ou equipamento. Na medida do possivel, tente
paralelizar a producdo dos protétipos entre as diversas equipes
disponiveis: enquanto a equipe de programacao implementa o
sistema de combate, a equipe de artes vai criando os desenhos
conceituais e cenarios, e a equipe de narrativa rascunha uma
sinopse da historia e dos personagens do jogo.

e Um bom caminho para iniciar a constru¢ao de um jogo incide em
criar um ambiente de interacao livre onde as mecanicas possam ser
utilizadas. Muitos designers chamam isso de “build the toy first’ ou
construir o brinquedo primeiro. A ideia dessa abordagem refere-se a
construir um ambiente e perceber como as mecanicas funcionam
nele, para se ter melhor ideia do que seria divertido fazer no jogo e,
assim, tracar objetivos mais expressivos para o jogador. Muitos
jogos utilizaram essa abordagem, como o GTA: primeiro a equipe
construiu uma cidade e varias mecanicas de interagdo para, depois,
definir qual seria a tematica do jogo e os objetivos que o jogador
teria de alcancar.

Uma dica final seria com relacdo ao uso de ferramentas as quais permitem
mudancas em tempo real dentro do projeto. Se toda vez que um membro da equipe
de design quiser fazer uma mudanca (por exemplo, colocar uma armadilha mais
adiante da fase para ver se o nivel fica mais facil/dificil), for necessario executar o
projeto inteiro, o processo de validacdo dos protétipos vai demorar muito. E comum
encontrar ferramentas de edicdo em que o designer pode realizar alteracdes em
tempo de execucdo (ele muda o valor de uma variavel e a mudanca ocorre na tela),
isso agiliza o processo e permite uma maior flexibilidade e independéncia das
equipes de desenvolvimento. Caso o motor do jogo ndo tenha esse tipo de suporte,
é interessante solicitar que a equipe de programac¢do construa uma ferramenta
como essa, que possa ser disponibilizada tanto para a equipe de artes como para a
equipe de design.

4 - Testando 1, 2, 3...

A atividade de testes ocorre durante todo o processo de desenvolvimento de um
jogo. O objetivo geral é garantir a qualidade do jogo, tanto no aspecto técnico como
no quesito diversao.

Uma das atividades iniciais de entrevista e pesquisa com os jogadores, que pode
ocorrer no inicio do desenvolvimento de um jogo, é a formacdo de grupos focais. O
objetivo é tentar validar no mercado se uma ideia de jogo é realmente interessante,
ou inverter o processo de design na tentativa de idealizar um jogo a partir do perfil e
das necessidades expressas pelos entrevistados. Essa abordagem deve ser realizada
de maneira cautelosa, pois se for feita com um grupo pequeno, é provavel que nao
exista uma representacdo real do mercado em geral.

A dificuldade de se realizar esse tipo de abordagem esta na escala em que se
deseja realizar a pesquisa: caso o objetivo seja um grande numero de respostas,
pode-se utilizar um formulario online, mas a qualidade das respostas € inferior a de
um método como entrevistas com pessoas ou grupos. Porém o custo para se
realizar entrevistas com um grande numero de pessoas pode se tornar proibitivo,
principalmente para projetos menores. Essa metodologia é aplicada normalmente
gquando ndo se tem ainda uma ideia certa do jogo que se deseja desenvolver.

Ao longo do processo de desenvolvimento existem varios tipos de testes que
podem ser realizados para avaliar a qualidade do produto:

e Testes de usabilidade verificam se a interface com o jogador esta
intuitiva e respondendo bem aos comandos, se 0 esquema de
navegacao ndao é complexo demais e se os controles sdo
confortaveis. Além disso, a interface pode ser testada em func¢ao dos
seus aspectos visuais, como disposicao dos elementos e esquema
de cores utilizado.

e Testes de plataforma verificam se o jogo se comporta de maneira
esperada em cada uma das plataformas-alvo para as quais o projeto
é desenvolvido, verificando questdes pertinentes ao hardware e a
compatibilidade de funcionalidades e interfaces de controle.

¢ Testes de localizagao verificam se as traducdes para outros
idiomas estdo adequadas e mantendo a coeréncia dos textos
originais.

Para cada sistema de mecanicas que criamos, é necessario realizar uma bateria
de testes para validar se eles funcionam de forma individual e de forma integrada
com os outros sistemas do jogo.

Apesar de variados, existem dois tipos de testes os quais sdo predominantes: 0s
testes de software e os testes de jogabilidade, que ocorrem ao longo de todo o
processo e englobam alguns dos testes mencionados acima. Vamos detalha-los nas
subsecdes a seguir!

4.1 - Teste de Software

Os testes de software sdo desenvolvidos pela equipe de programacdo e tém
como obijetivo verificar e validar o c6digo desenvolvido para o jogo. Ou seja, se ele
esta correto e se efetivamente implementa o que foi especificado para cada
funcionalidade.

Testar um software € um processo que ocorre em diversas camadas: desde 0s
componentes basicos que formam o programa (classes, funcbes) até os sistemas
inteiros do jogo (jogabilidade principal, sistemas de IA, sistemas de renderizacdo
grafica, sistemas de combate, etc.) e, por fim, o jogo como um todo. Esses podem ser
realizados pelo proprio desenvolvedor das funcionalidades, mas é comum existir
uma equipe de testes especifica para avaliar o codigo produzido. Dessa forma, se
tem olhares diferentes sobre uma mesma parte do jogo, o que facilita a detec¢do de
erros ou equivocos do programador.

Com relacdo a abordagem do teste, podemos classifica-los em dois tipos: testes
de caixa preta e testes de caixa branca.

Testes de caixa preta ou comportamentais sdo testes baseados na
especificacdo da funcionalidade, e ndo na sua estrutura. Dessa forma, o testador
executa varios cenarios possiveis sem observar a forma como a funcionalidade foi
codificada, e o caso de teste ocorre com a alimentacdo de diversos valores de
entrada, os quais geram uma saida que é comparada com o resultado esperado a
partir da especificacao da funcao.

Imagine um jogo de tabuleiro 2D, com uma perspectiva de camera top-down,
onde o personagem tem uma posi¢do representada por dois valores (X, Y).
Considere também que o canto inferior esquerdo representa a coordenada (0, 0) no
tabuleiro e que seu tamanho maximo é de (512, 512). Logo, uma especificacdao para
a funcdo mover_no_tabuleiro do jogo poderia ser dada da seguinte forma:

e Direcional para cima faz o valor do Y aumentar uma unidade por
vez.

¢ Direcional para baixo faz o valor de Y diminuir uma unidade por vez.

e Direcional para a direita faz o valor de X aumentar uma unidade por
vez.

e Direcional para a esquerda faz o valor de X diminuir uma unidade
por vez.

O personagem ndo pode sair dos limites do tabuleiro.

Com essa especificacdo, nés podemos criar varios casos de teste sem precisar
verificar como o codigo da funcdo mover_no_tabuleiro foi construido! Basta fornecer
uma sequéncia de movimentacdes, calcular a saida esperada e verificar se a funcao
retornou o mesmo valor. Se o jogador esta na posicao (2, 3) e ele anda duas vezes
para a direita e uma para cima, sua posicdo deve ser (4, 4). O problema é que testar
todas as possibilidades é impossivel, dado que o conjunto de combinacdes
diferentes que podem ser executadas é praticamente infinito! Para isso, nés vamos
precisar definir um conjunto de caso de testes que seja representativo o suficiente
para cobrir as diversas possibilidades de cenarios validos e invalidos que poderiam
ocorrer dessas simples regras de movimentacao.

Uma forma de realizar isso é através da criacdo de classes de equivaléncia, ou
seja, cenarios validos e invalidos que nosso programa pode encontrar ao longo de
sua execucdo. Considerando o exemplo da movimenta¢dao, uma classe valida seria
uma movimentacdo para cima que aumenta apenas o valor do componente Y e ndo
sai do tabuleiro. Se testarmos alguns casos com esse tipo de movimentacdo e eles
operarem de forma correta, é provavel entdao que ela funcione para todos as outras
movimentacBes dessa mesma classe (movimentacBes para cima, dentro do
tabuleiro).

J& se considerarmos um caso limite (o personagem na borda de cima do
tabuleiro), entdo teriamos uma classe invalida se o personagem se movimentasse
além das bordas. Seguindo esse raciocinio, podemos construir um conjunto
relativamente pequeno de casos de testes que cubram todos os tipos de
movimentacdo existentes no tabuleiro sem ter de, necessariamente, testar todas as
possibilidades de forma exaustival!

Figura 13 - Exemplos de casos de teste para o tabuleiro usado como exemplo.

Mas ele morreu...

Testes de caixa branca ou estruturais tém como objetivo avaliar a estrutura
do cédigo e verificar se todos os caminhos possiveis de execu¢do do programa sao
testados e verificados. Através desse teste é possivel encontrar partes de cédigo
“mortas” (nunca sao atingidas pelo programa), o que pode indicar erros de
implementacdo ou a necessidade de refatoracao (reescrita, falado de forma chique)
do codigo da funcionalidade para eliminar partes obsoletas. Um problema do teste
de caixa branca é que, como o testador vé a estrutura do cédigo, ele acaba sendo
condicionado a escrever testes os quais se adequem aquela estrutura, nao
pensando em casos que possam verificar se aquele cddigo cobre todas as
possibilidades da especificacao.

Normalmente, os dois tipos de teste sao aplicados em conjunto, ja que possuem
finalidades diferentes, mas com carater complementar para validacdao de um
programa ou componente do sistema.

Outra classificacdo que podemos realizar com relacdo aos testes é em fung¢ao do
escopo no qual o teste é executado. Testes que sdo executados nos elementos mais
basicos do sistema (como classes, componentes e fun¢des) sao chamados de testes

unitarios. Esses testes buscam validar cada unidade em relacao as entradas e saidas
definidas na interface do componente, e tem como objetivo garantir que cada
unidade funciona corretamente.

O teste unitario é feito apenas com o componente especifico, para evitar que
erros provenientes de outras partes do sistema possam se propagar e resultar em
efeitos colaterais no componente testado (tipo efeito borboleta e teoria do caos, s6
gue o tufao acontece no seu trabalho). Esse tipo de teste é utilizado no processo de
desenvolvimento para garantir que, mesmo apés mudancas no codigo do sistema,
seus componentes ainda funcionem corretamente. Uma outra vantagem é que erros
detectados estdao relacionados diretamente ao componente testado, facilitando a
sua localizacdo e correcao. Além disso, se o programador ja pensa nos casos de
teste que serdao implementados, é mais provavel que ele avalie bem a especificacao
da funcionalidade e entenda melhor o que deve fazer, reduzindo erros decorrentes
de interpreta¢do equivocada.

Por fim, mas ndo menos importante, existem varios frameworks que
automatizam os testes unitarios! Dessa forma, o programador implementa o caso de
teste como um programa e a tarefa macante e repetitiva de executa-lo varias vezes
fica a cargo do computador! Isso é interessante também do ponto de vista de
manutencdo de cddigo: quando ocorrer uma mudanca no sistema, basta colocar
todos os casos de teste para rodarem novamente e verificar se as mudancas
efetuadas geram algum erro no programa.

Além dos testes unitarios, existem mais dois tipos de testes que devem ser
realizados para garantir o funcionamento de um software. Os testes de integracao
verificam se nao ha falhas operacionais dos componentes quando utilizados de
forma conjunta. Embora cada componente possa ter passado por testes de forma
individualizada, ainda podem ocorrer erros no momento da comunicag¢do entre dois
componentes diferentes, logo esse teste visa detectar erros na especificacdo da
interface entre partes do programa. Em um Udltimo nivel, o jogo sera testado de
forma completa, com um teste de sistema: da mesma forma que os componentes
individuais sao agrupados em modulos ou subsistemas para o teste de integracao,
esses moédulos sdo agrupados e executados em conjunto para verificar o
funcionamento do sistema como um todo. Esse tipo de teste serve para verificar
funcionalidades e caracteristicas de desempenho e usabilidade do jogo de modo
geral.

Um Jdltimo tipo de teste comum em sistemas de software é o teste de
aceitacdo, e refere-se a um aceno do usuario final, indicando que o sistema
corresponde as suas expectativas. No entanto, jogos nao sdo sistemas de softwares
comuns, e os testes de aceitagdo costumam ser executados com varios grupos
distintos, em momentos diferentes do ciclo de desenvolvimento. Esses sdo os
chamados testes de jogabilidade, os quais veremos a seguir!

4.2 - Testes de Jogabilidade

Se o teste de software fica a encargo dos programadores, o teste de jogabilidade
é uma ferramenta essencial para os designers! Através dele serdo observados varios
elementos do jogo: seu balanceamento, a forma como os jogadores abordam o jogo,
as estratégias desenvolvidas, 0 engajamento durante as sessdes de jogo e, 0 mais
importante, se o jogo é divertido ou nao!

Figura 14 - Opa, acho que o jogo nao estava tdo bom!

O primeiro passo para a realizacdo do teste é definir o grupo de testadores. Ao
longo do projeto esse grupo vai alternando: inicialmente, os designers e a equipe de
desenvolvimento realizam os primeiros testes com o intuito de verificar como os
sistemas do jogo estao progredindo. A partir dessas primeiras impressdes, ja podem
ser necessarios ajustes, fazendo com que o jogo fique cada vez mais refinado. O
problema é que se uma mesma equipe testa repetidamente o mesmo jogo (lembra
o que falamos sobre a viseira do desenvolvedor?), esse olhar “mal-acostumado” dos

desenvolvedores pode evitar que eles percebam um problema com o jogo, ou pior,
levar a ajustes desnecessarios devido a uma percepcao errbnea da dificuldade ou
balanceamento do jogo.

Figura 15 - Esse jogo esta muito facil!
Jogo: Dark Souls

Fonte: http://www.giantbomb.com/dark-souls/3030-32697/forums/durante-from-neogaf-fixes-
resolution-problems-558179/. Acesso em 28 out. 2015.

Nesse momento, € importante que haja o envolvimento de outras equipes para
testar o jogo. Um primeiro passo é contratar testadores experientes, de preferéncia
jogadores hardcore do género especifico do jogo que esta sendo desenvolvido.
Esses jogadores possuem uma carga de conhecimento de outros jogos que pode
estabelecer uma base de compara¢do com o seu, e o feedback deles é essencial
nessa fase intensa de ajustes. A medida que o jogo se aproxima de uma vers3o alfa,
é importante demonstra-lo a novos testadores para que eles tenham um primeiro
olhar sobre o jogo. Isso permite sempre uma perspectiva nova sobre o jogo e seus
elementos, aumentando as chances de criar uma experiéncia balanceada para os
jogadores.

Um segundo aspecto que deve ser observado é com relacdo ao local do teste.
Ele pode ser realizado em um local fisico especifico ou na prépria casa dos
testadores, via internet. O teste in-loco (na propria empresa ou em local reservado
para essa atividade) permite que a equipe de design observe os jogadores em acao e
colha dados diretamente da sessdao de testes, porém tem uma escala limitada,
devido a restricdo fisica de quantos testadores podem ser alocados para realizar o

http://www.giantbomb.com/dark-souls/3030-32697/forums/durante-from-neogaf-fixes-resolution-problems-558179/

teste. Ja com a execuc¢do online é possivel obter uma grande massa de testadores,
porém a coleta de dados é dificultada. Normalmente se aplicam questionarios
(quase sempre respondidos de forma “automatica” pelo jogador) ou pela coleta de
dados da sessdo de jogos de cada testador, sendo feita uma mineracdo em cima
dessa base para tentar descobrir padrées de comportamento. E importante que os
jogadores os quais participam do teste tenham total ciéncia sobre esses fatos, pois o
uso de informacdes pessoais sem consentimento pode acarretar em sérios prejuizos
legais para o desenvolvedor do jogo!

Assim como os protétipos, os testes sao realizados com um objetivo especifico
em mente. Um teste pode ser realizado para avaliar apenas o sistema de controles
do jogador ou a navegacao de um determinado nivel. Em fases finais do processo de
desenvolvimento, os testes enfatizam na avaliacdo da jogabilidade geral e do
balanceamento do jogo.

Por fim, é muito importante que o designer se atenha a uma determinada
metodologia no momento de realizar os testes, pois ele precisa decidir como
procedera em trés etapas do teste:

e Preparacao inicial: o designer deve decidir o quanto de informacdo
precisara fornecer ao jogador antes de iniciar a sessdo de teste.
Dependendo do foco do teste, ele pode fornecer uma breve
informacdo sobre os esquemas de controle e/ou sobre o nivel que o
jogador testara. Em testes com versdes finais do jogo o ideal é ndo
fornecer nenhuma informacao e verificar se o jogo consegue ensinar
e informar o jogador de forma adequada com relagao as mecanicas
e a narrativa, e se o jogador consegue perceber os objetivos de
forma clara.

e Observacao do jogador: aqui é extremamente importante que o
designer tenha uma postura passiva! Vocé nunca deve interferir com
uma sessdo de jogo ou tentar orientar o jogador sobre uma forma
“correta” de interacdo. Se o jogador ndo percorre um nivel ou
enfrenta um desafio do jeito que vocé planejou, tente observar
porque isso aconteceu, em vez de dizer que ele deveria ter ido para
o outro lado. Isso possibilita que vocé altere o seu jogo para melhor
orientar o jogador, ou ainda pode revelar possibilidades de
jogabilidade (principalmente emergente), as quais vocé ainda nao
havia percebido!

e Coleta de dados: ao longo da sessao de jogos, é importante para o
designer coletar dados sobre o que o jogador esta fazendo (que
decisdes ele toma, que caminhos ele segue no jogo, por exemplo),
podendo ser através de filmagens da sessao de jogo, com cameras
focando as rea¢des do jogador e a tela do jogo. Isso pode revelar em
quais momentos o jogador esta sentindo maior tensao, em quais
momentos ele esta entediado, quais os momentos que o divertiram
mais, etc. Esse tipo de informacgdo pode ser essencial nos ajustes
finais! Caso ndo seja possivel a captura da sessdo ao vivo, o uso de
entrevistas e questionarios para entender a experiéncia que o
jogador vivenciou também consistem em ferramentas importantes
para adquirir conhecimento sobre o que funciona ou ndo dentro do

jogo.

Seguindo esses passos, o designer aumenta a chance de conseguir informacdes
produtivas e de criar um jogo realmente divertido e engajante! Claro que
representam mais dicas do que procedimentos obrigatérios: o processo pode se
adequar a realidade do seu projeto ou empresa. O importante é focar nos objetivos
principais do teste de jogabilidade e entender como o jogador percebe o seu jogo,
quais elementos o divertem e quais elementos ndo estao funcionando.

; Nossa a disciplina ja esta
E vamos ficando piina)

i ~ chegando ao final? Como
por aqui!

passa rapido!

Na préxima aula vamos falar de uma

parte mais burocratica do processo
de desenvolvimento de jogos:
a documentacio! Até |a!

Pontos-chave

Nossa aula 2 em 1! Os assuntos dessa semana fecham a nossa exploracdo da
tétrade elemental, mas isso ndo quer dizer que vocés viram tudo o que ha sobre o
assunto. Aproveitem para dar uma olhada na sessao de leitura complementar ou, se

possivel, consultar as fontes presentes na secdao de referéncias. Mas antes disso, que
tal reforcarmos um pouco o que vimos hoje?

e Protétipos sao produtos que representam uma versao simplificada
do projeto (ou parte dele).

e Prototipos possuem um escopo bem definido e sdo construidos com
um objetivo especifico em mente. Sdo alinhados a ideia de ciclos
rapidos de iteracao do processo de design.

e Os protétipos podem ser desenvolvidos em midias analégicas ou
digitais. Com relacdo a qualidade, eles podem ser de Baixa
fidelidade (Gray-box Model) ou Alta fidelidade (Vertical Slice).

e Testes sdo cenarios e casos utilizados para efetivar a valida¢ao e
verificacdo do jogo desenvolvido. Também permitem que os
designers observem a interacdao dos jogadores com o jogo,
auxiliando nos ajustes e no balanceamento.

e Ao longo do desenvolvimento de um jogo, existem varios tipos de
testes que sao aplicados para averiguar a qualidade da producao,
como testes de usabilidade, plataforma, software e jogabilidade.

e Os testes de software podem ser classificados com relacao ao
objetivo e a metodologia, como testes de Caixa Preta
(Comportamentais) ou teste de Caixa Branca (Estruturais).

e Os testes de software podem ser classificados com relacao ao
escopo do teste em: unitarios (componentes basicos do sistema),
integracao (conjunto de componentes, mdodulos) e sistema (jogo
completo).

e O teste de jogabilidade tém como objetivo avaliar a intera¢ao do
jogador com os elementos do jogo, se o balanceamento esta
adequado e se o jogo esta divertido.

Leitura Complementar

Olha, esta semana caprichamos! As vezes eu penso que essa secdo de leitura
complementar é a melhor parte da aula. Tantos materiais legais para ler/assistir!
Confiram abaixo:

e Um relato de experiéncia de prototipa¢do de um jogo, com varias
dicas e comentarios sobre as decisdes tomadas no processo de
construcdo do jogo.

e Um artigo breve comentando quais as principais diferencas entre o
processo de teste de softwares tradicionais e os testes de jogos
digitais.

e Uma matéria interessante mostrando que nem tudo sdo flores na
vida dos profissionais da area de testes de jogos. Uma leitura para
conscientizar sobre as dificuldades enfrentadas na area!

¢ Um conjunto de minijogos e prototipos que foram concebidos
durante o desenvolvimento do jogo Spore. Esse repositorio mostra o
quanto o investimento em prototipacdo é necessario para a criacao
de bons jogos, principalmente quando a ideia trabalhada é
inovadoral

Autoavaliacao

1. Quais problemas podem existir quando ndo usamos prototipacdo e testes
NO NOSSO projeto?

2. A utilizagdo de testes automatizados permite um aumento de
produtividade no projeto a longo prazo. Quais tipos de testes podem
usufruir dessa técnica?

3. Qual tipo de prototipo seria melhor utilizar para vender a ideia do jogo a
uma empresa? E qual tipo de prototipo seria melhor para discutir ideias
sobre um sistema de stealth para um jogo?

http://gamesfromwithin.com/prototyping-for-fun-and-profit
http://www.gamasutra.com/blogs/JohanHoberg/20140721/221444/Differences_between_Software_Testing_and_Game_Testing.php
http://www.ign.com/articles/2012/03/29/the-tough-life-of-a-games-tester
http://www.spore.com/comm/prototypes

Referéncias

ASURA THE GAME. Grey boxing levels to save your life and time! Disponivel
em: <http://asurathegame.com/blog/grey-boxing-levels-to-save-your-life-and-time/>.
Acesso em: 25 out 2015.

GAMES FROM WITHIN. Prototyping: you're (probably) doing it wrong. Disponivel
em: <http://gamesfromwithin.com/prototyping-youre-probably-doing-it-wrong>.
Acesso em: 24 out. 2015.

GRAY, Kyle. et al. How to prototype a game in under 7 days. Disponivel em:
<http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_un
der 7 .php?print=1>. Acesso em: 25 out. 2015.

HECKER, Chris. Advanced prototyping. Disponivel em:
<http://chrishecker.com/Advanced Prototyping>. Acesso em: 26 out. 2015.

NAYAK, Soubhagya. Advantages of Unit Testing. Disponivel em
<https://moanubhuti.wordpress.com/2011/04/23/advantages-of-unit-testing/>.
Acesso em: 27 out. 2015.

ROGERS, Scott. Level up! The guide to great video game design. John Wiley &
Sons, 2014.

SCHELL, Jesse. The Art of Game Design: A book of lenses. CRC Press, 2008.
SOMMERVILLE, lan. Software engineering. 9. ed. Addison Wesley, 2011.

WHAT GAMES ARE. Vertical slice. Disponivel em
<http://www.whatgamesare.com/vertical-slice.htm!>. Acesso em: 26 out. 2015.

http://asurathegame.com/blog/grey-boxing-levels-to-save-your-life-and-time/
http://gamesfromwithin.com/prototyping-youre-probably-doing-it-wrong
http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php?print=1
http://chrishecker.com/Advanced_Prototyping
https://moanubhuti.wordpress.com/2011/04/23/advantages-of-unit-testing/
http://www.whatgamesare.com/vertical-slice.html

